Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree
نویسندگان
چکیده
We seek to improve deep neural networks by generalizing the pooling operations that play a central role in current architectures. We pursue a careful exploration of approaches to allow pooling to learn and to adapt to complex and variable patterns. The two primary directions lie in (1) learning a pooling function via (two strategies of) combining of max and average pooling, and (2) learning a pooling function in the form of a tree-structured fusion of pooling filters that are themselves learned. In our experiments every generalized pooling operation we explore improves performance when used in place of average or max pooling. We experimentally demonstrate that the proposed pooling operations provide a boost in invariance properties relative to conventional pooling and set the state of the art on several widely adopted benchmark datasets; they are also easy to implement, and can be applied within various deep neural network architectures. These benefits come with only a light increase in computational overhead during training and a very modest increase in the number of model parameters.
منابع مشابه
A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملMixed Pooling for Convolutional Neural Networks
Convolutional Neural Network (CNN) is a biologically inspired trainable architecture that can learn invariant features for a number of applications. In general, CNNs consist of alternating convolutional layers, non-linearity layers and feature pooling layers. In this work, a novel feature pooling method, named as mixed pooling, is proposed to regularize CNNs, which replaces the deterministic po...
متن کاملDeep Online Convex Optimization with Gated Games
Methods from convex optimization are widely used as building blocks for deep learning algorithms. However, the reasons for their empirical success are unclear, since modern convolutional networks (convnets), incorporating rectifier units and max-pooling, are neither smooth nor convex. Standard guarantees therefore do not apply. This paper provides the first convergence rates for gradient descen...
متن کاملGated Neural Networks for Targeted Sentiment Analysis
Targeted sentiment analysis classifies the sentiment polarity towards each target entity mention in given text documents. Seminal methods extract manual discrete features from automatic syntactic parse trees in order to capture semantic information of the enclosing sentence with respect to a target entity mention. Recently, it has been shown that competitive accuracies can be achieved without u...
متن کاملA Fully Trainable Network with RNN-based Pooling
Pooling is an important component in convolutional neural networks (CNNs) for aggregating features and reducing computational burden. Compared with other components such as convolutional layers and fully connected layers which are completely learned from data, the pooling component is still handcrafted such as max pooling and average pooling. This paper proposes a learnable pooling function usi...
متن کامل